RESEARCH ARTICLE

Cleistocalyx nervosum Extract Ameliorates Chemical-Induced Oxidative Stress in Early Stages of Rat Hepatocarcinogenesis

Sirinya Taya¹, Charatda Punvittayagul¹, Wanida Inboot², Shoji Fukushima³, Rawiwan Wongpoomchai¹*

Abstract

Purpose: To study the effect of Cleistocalyx nervosum extract (CE) on diethylnitrosamine (DEN) and phenobarbital (PB) induced oxidative stress in early stages of rat hepatocarcinogenesis. Materials and Methods: Male Wistar rats were divided into 4 groups, with Group 1 as a negative control and Group 2 was a positive control receiving DEN injections once a week and PB in drinking water for 6 weeks. Two weeks before DEN initiation and PB treatment, Groups 3 and 4, were fed with 500 and 1000 mg/kg of CE, respectively, for 8 weeks. Results: A number of GST-P-positive foci, preneoplastic lesions, in the liver were markedly increased in carcinogen administered rats, but was comparatively decreased in rats treated with 1000 mg/kg of CE. The CE reduced malondialdehyde in serum and in the livers of rats treated with DEN and PB. Moreover, CE significantly increased the activities of glutathione peroxidase and catalase in rat liver. Conclusions: CE appeared to exert its chemopreventive effects by modulating antioxidant status during DEN and PB induced early stages of hepatocarcinogenesis in rats.

Keywords: Antioxidant - Cleistocalyx nervosum - GST-P form - Hepatocarcinogenesis

Asian Pac J Cancer Prev, 15 (6), 2825-2830

Introduction

Oxidative stress has long been known to be involved in the pathogenesis of age-related and chronic diseases, including cancer. It is defined as an imbalance between oxidants and antioxidants in favor of the former, resulting in an overall increase in cellular levels of reactive oxygen species (ROS) (Klaunig and Kamendulis, 2004). Oxidative DNA damage can trigger tumor initiation. ROS can affect a number of cellular processes critical in tumor development such as cell proliferation, senescence, inflammation and metastasis (Chandra et al., 2000).

Epidemiological studies have shown an inverse association between consumption of vegetables and fruits and the risk of human cancers at many sites (Reiss et al., 2012). It is believed that antioxidant properties of these plants protect cells from ROS-mediated DNA damage that can result in mutation and subsequent carcinogenesis (Lee et al., 2013). Anthocyanins give bright red, blue and purple colors to fruits and vegetables. They possess antioxidant activity, which is considered to be an important physiological function (PriorWu, 2006). Anthocyanins have also been reported to have anticarcinogenic and anti-inflammatory activity, and are associated with Phase II enzyme activation, apoptotic induction, anti-cell proliferation, anti-angiogenesis, anti-invasiveness and induction of differentiation (WangStoner, 2008).

Cleistocalyx nervosum var. paniala is an edible fruit found in South East Asia, including northern Thailand. It contains high amounts of phenolic compounds and anthocyanins. The aqueous extract of C nervosum has been shown to have antimutagenic effects (Charoenpis et al., 2012). In a previous report, the ethanol extract of C nervosum decreased lipid peroxidation and increased glutathione peroxidase activity in rats (Thuschana et al., 2012).

About 60% of known chemical carcinogens have been found to exert carcinogenic potential to the livers of rodents. The rat liver medium-term bioassay for carcinogens has many advantages, including easy detection of preneoplastic enzyme-altered lesions, which are widely accepted as early indicators of neoplastic development (Ito et al., 2003). Glutathione-S-transferase placental form (GST-P) expression has been used as a marker for preneoplastic and neoplastic development in rat liver (Ketterer, 2001). The detection of GST-P-positive hepatocytes is one important tool for analyzing relevant carcinogenic or anticarcinogenic responses during the initiation and promotion stages of rat liver carcinogenesis (Ito et al., 1988). Diethylnitrosamine (DEN) is a potent hepatocarcinogen that has been used as an initiating agent in some two-stage carcinogenesis protocols for hepatocarcinogenic studies (Ramakrishnan et al., 2006). Phenobarbital (PB) is a classical non-genotoxic carcinogen

¹Department of Biochemistry, Faculty of Medicine, ²Laboratory Animal Center, Chiang Mai University, Chiang Mai, Thailand, ³Japan Bioassay Research Center, Hirasawa, Hadano, Kanagawa, Japan *For correspondence: rawiwan.wong@cmu.ac.th
that promotes hepatocarcinogenesis in rodents when administered subsequent to a genotoxic carcinogen like DEN (Zohny et al., 2013).

In the present study, we investigated the effect of *C. nervosum* extract on DEN and PB induced oxidative stress during the early stages of hepatocarcinogenesis in rats, using GST-P positive foci as the endpoint marker.

Materials and Methods

Chemicals

3,3′-diaminobenzidine tetrahydrochloride hydrate and diethylnitrosamine (DEN) were purchased from Sigma, USA. Phenobarbital (PB) was purchased from Wako, Japan. Glutathione-S-transferase was purchased from MBL, Japan. A Vectastain® ABC kit was purchased from Vector Laboratories, USA. All chemicals and reagents used were of analytical grade.

Preparation of Cleistocalyx nervosum

The fruits of *C. nervosum* were collected from Tambol Choeng Doi, Amphur Doi Saket, and Chiang Mai, Thailand. This plant was identified and confirmed by comparison with voucher specimens of known identities (QBG 7290, QBG 17340 and QBG 25139) in the Queen Sirikit Botanic Garden. The voucher herbarium specimen (Punvittayagul and Taya 1) was deposited at the Queen Sirikit Botanic Garden, Chiang Mai, Thailand. The pulp was manually separated from seed, weighed and stored in a freezer at -20°C until analysis.

Extraction procedure

CE was previously prepared in our group by Charoensin and his colleagues. Briefly, 100 g of fresh *C. nervosum* pulp was added with 50 ml of distilled water and the mixture was then blended with a blender. The grounded mixture was next filtered with Whatman paper No.1 filter papers. The filtrate was centrifuged at 3,000 rpm for 15 minutes in order to collect the supernatant for lyophilization and the yield was consequently determined. The lyophilized CE was finally analyzed for a major component in CE by Puatanachokchai et al. (2006) using rabbit anti rat GST-P (Medical and Biological Laboratories Co., Ltd., Nagoya, Japan, 1:2000 dilution, 37°C for 2 hours), biotin-labeled goat anti-rabbit IgG and an avidin-biotin complex method (ABC kit); Vector Laboratories, Burlingame, CA). 3′-3′-Diaminobenzidine was applied for final color development. GST-P positive hepatocytes comprised 20 or more cells and were counted under a light microscope.

Biochemical estimations

Use of a thiobarbituric acid reactive substance (TBARs) is a well-established assay for screening and monitoring lipid peroxidation. Levels of TBARs (Fujiwara, 2003; Suresh et al., 2013) and glutathione (AkerboomSies, 1981) were estimated in the serum and liver tissue. The activities of antioxidant enzymes, including catalase, glutathione reductase, glutathione peroxidase and heme oxygenase,

<table>
<thead>
<tr>
<th>Day</th>
<th>Group 1 (n=9)</th>
<th>Group 2 (n=12)</th>
<th>Group 3 (n=10)</th>
<th>Group 4 (n=9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Tap water</td>
<td>DEN</td>
<td>DEN</td>
<td>DEN</td>
</tr>
<tr>
<td>7</td>
<td>0.9% Normal saline solution 4 ml/kg bw, ip</td>
<td>Phenobarbital 500 ppm in drinking water</td>
<td>Distilled water 4 ml/kg bw</td>
<td>3,3′-diaminobenzidine 500 mg/kg bw of C. nervosum extract, ig</td>
</tr>
</tbody>
</table>

Figure 1. Treatment Protocol for the Effect of Aqueous Extract of C. nervosum on Oxidative Stress Induced Early Stages of Rat Hepatocarcinogenesis
Cleistocalyx nervosum Extract Ameliorates Chemical-Induced Oxidative Stress in Early Stages of Rat Hepatocarcinogenesis

The extract tented to reduce the number of GST-P positive foci in liver of rats treated with diethylnitrosamine and phenobarbital. The extract significantly decreased the total number of GST-P positive foci in liver of rats treated with diethylnitrosamine and phenobarbital as compared to those of the control group. The number of GST-P-positive foci in liver of rats treated by diethylnitrosamine and phenobarbital were not significantly different among the groups of rats in this study. The treatment of 1000 mg/kg bw of C. nervosum extract reduced liver weight of diethylnitrosamine and phenobarbital treated rats.

Table 1. Body and Liver Weights of Rats Administered C. nervosum Extract During Treatments with Diethylnitrosamine and Phenobarbital

<table>
<thead>
<tr>
<th>Treatments</th>
<th>No. of rats</th>
<th>Final body weight (g)</th>
<th>Liver weight Absolute (g)</th>
<th>Liver weight Relative (/100 g bw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9% NSS+Tap water</td>
<td>8</td>
<td>376±26</td>
<td>12.21±1.36</td>
<td>3.24±0.26</td>
</tr>
<tr>
<td>DEN+PB</td>
<td>12</td>
<td>380±31</td>
<td>14.91±1.66*</td>
<td>3.92±0.25*</td>
</tr>
<tr>
<td>DEN+PB+CE 500 mg/kg bw</td>
<td>10</td>
<td>360±32</td>
<td>14.51±2.07</td>
<td>4.01±0.26</td>
</tr>
<tr>
<td>DEN+PB+CE 1000 mg/kg bw</td>
<td>9</td>
<td>350±26</td>
<td>13.77±0.87</td>
<td>3.93±0.33</td>
</tr>
</tbody>
</table>

*Significant different from negative control group, p<0.05; Values are mean±S.D; DEN: Diethylnitrosamine; PB: Phenobarbital; CE: C. nervosum extract

Table 2. Quantitative Data for GST-P-Positive Liver Cell Foci in rats Administered C. nervosum Extract During Treatments with Diethylnitrosamine and Phenobarbital

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Total Number of GST-P positive foci (foci/cm²)</th>
<th>Foci containing 21-30 cells/focus</th>
<th>31-50 cells/focus</th>
<th>> 50 cells/focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9% NSS+Tap water</td>
<td>0±0</td>
<td>0±0</td>
<td>0±0</td>
<td>0±0</td>
</tr>
<tr>
<td>DEN+PB</td>
<td>2.64±1.04*</td>
<td>1.60±0.81*</td>
<td>0.70±0.50*</td>
<td>0.34±0.46*</td>
</tr>
<tr>
<td>DEN+PB+CE 500 mg/kg bw</td>
<td>2.87±1.92</td>
<td>1.78±1.26</td>
<td>0.84±0.88</td>
<td>0.25±0.35</td>
</tr>
<tr>
<td>DEN+PB+CE 1000 mg/kg bw</td>
<td>1.51±0.64**</td>
<td>1.03±0.66</td>
<td>0.26±0.47</td>
<td>0.21±0.34</td>
</tr>
</tbody>
</table>

*Significant different from negative control group, p<0.05; **Significant different from positive control group, p<0.05; Values are mean±S.D; DEN: Diethylnitrosamine; PB: Phenobarbital; CE: C. nervosum extract

Statistical analysis

Data are expressed as mean±SD of each variable for each group. The data were firstly tested for normality using a Kruskal-Wallis test. The significance of differences between groups was analyzed using the analysis of variance (ANOVA) with LSD for post hoc tests. P values<0.05 were regarded as significant.

Results

Effect of C. nervosum extract on body and liver weights of rats treated by diethylnitrosamine and phenobarbital

Average body weights of different animal groups at various time points are shown in Figure 2. No statistical differences were observed between the growth rates of any of the treatment or control groups. Final body weights and absolute and relative liver weights of various groups are presented in Table 1. The average absolute and relative liver weights of diethylnitrosamine and phenobarbital treated rats were significantly increased as compared to those of the control group. Final body weights of diethylnitrosamine and phenobarbital treated rats were not significantly different among the groups of rats in this study. The treatment of 1000 mg/kg bw of C. nervosum tended to reduce liver weight of diethylnitrosamine and phenobarbital treated rats.

Table 2. Quantitative Data for GST-P-Positive Liver Cell Foci in rats Administered C. nervosum Extract During Treatments with Diethylnitrosamine and Phenobarbital

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Total Number of GST-P positive foci (foci/cm²)</th>
<th>Foci containing 21-30 cells/focus</th>
<th>31-50 cells/focus</th>
<th>> 50 cells/focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9% NSS+Tap water</td>
<td>0±0</td>
<td>0±0</td>
<td>0±0</td>
<td>0±0</td>
</tr>
<tr>
<td>DEN+PB</td>
<td>2.64±1.04*</td>
<td>1.60±0.81*</td>
<td>0.70±0.50*</td>
<td>0.34±0.46*</td>
</tr>
<tr>
<td>DEN+PB+CE 500 mg/kg bw</td>
<td>2.87±1.92</td>
<td>1.78±1.26</td>
<td>0.84±0.88</td>
<td>0.25±0.35</td>
</tr>
<tr>
<td>DEN+PB+CE 1000 mg/kg bw</td>
<td>1.51±0.64**</td>
<td>1.03±0.66</td>
<td>0.26±0.47</td>
<td>0.21±0.34</td>
</tr>
</tbody>
</table>

*Significant different from negative control group, p<0.05; **Significant different from positive control group, p<0.05; Values are mean±S.D; DEN: Diethylnitrosamine; PB: Phenobarbital; CE: C. nervosum extract

medium foci and large foci rather than very large foci, which contain more than 50 GSTP labelled hepatocytes per focus.

Effect of *C nervosum* extract on lipid peroxidation and antioxidant enzymes in liver and serum of rats treated with diethylnitrosamine and phenobarbital

The treatments with diethylnitrosamine and phenobarbital significantly changed only the contents of TBARs and glutathione in the rat livers. The highest doses of *C nervosum* extract tended to decrease TBARs levels and increase GSH levels. Nevertheless, the level of TBARs was significantly reduced in the serum of rats treated with high doses of extract and carcinogen (Table 3).

The effect of *C nervosum* extract on antioxidant enzymes activities in rat liver is shown in Figure 3. The rats fed with *C nervosum* extract showed significantly increased glutathione peroxidase and catalase activities in the liver when compared to carcinogen treated rats. The *C nervosum* extract did not modulate the activities of glutathione reductase and heme oxygenase in the livers of diethylnitrosamine and phenobarbital treated rats.

Discussion

The treatment of *C nervosum* extract significantly decreased the number and size of GST-P positive foci in diethylnitrosamine and phenobarbital induced early stages of hepatocarcinogenesis in rats. Anthocyanins found in fruits and vegetables have been reported to possess antioxidant and anti-cancer activities. The main anthocyanins in *C nervosum* extract were cyanidin-3-glucoside, cyanidin-3, 5-diglucoside and cyanidin-5-glucoside (Charoensin et al., 2012). Cyanidin-3-glucoside had anti-tumor activity against gastric adenocarcinoma cells (Sun et al., 2012), decreased in vitro invasiveness of a human lung cancer cell line (Chen et al., 2006) and suppressed neoplastic cell transformation by directly targeting phosphatidylinositol-3-kinase (Song et al., 2012). Less is known concerning was the chemopreventive effect of anthocyanins on diethylnitrosamine and phenobarbital induced hepatocarcinogenesis in rats. Bishayee et al. reported that an anthocyanins rich-extract from black currant had chemopreventive effects against diethylnitrosamine and phenobarbital-induced hepatocarcinogenesis via inhibition of abnormal cell proliferation and induction of apoptosis (Bishayee et al., 2011).

Diethylnitrosamine, a rodent genotoxic hepatocarcinogen, could adduct DNA after being metabolized by CYP2E1, leading to fixed DNA mutation. The hepatic GST-P positive foci, a preneoplastic lesion of rat hepatocarcinogenesis in diethylnitrosamine initiated rats, are commonly detected approximately 4 weeks after a single injection (Tsuda et al., 2010). Repeated exposures to overdoses of phenobarbital, a classical non-genotoxic carcinogen in rodents, could accelerate tumor promotion by CYP2B1 mediating reactive oxygen species (Kinoshita et al., 2002; Imaoka et al., 2004; Puatanachokchai, Kakuni et al., 2006). In addition, administration of diethylnitrosamine has been reported to generate reactive substances of lipid peroxidation (Thirunavukkarasu et al., 2001; Pracheta et al., 2011), and phenobarbital enhanced the formation of reactive oxygen species in the preneoplastic nodules in rat liver (Jeyabal et al., 2005). Lipid peroxidation is considered as one of mechanisms of tissue damage caused by free radicals. An administration of diethylnitrosamine and phenobarbital has been reported to generate lipid peroxidation in the preneoplastic nodules in rat liver (Scholz et al., 1990; Singh et al., 2004). We also found increased TBARs

Cleistocalyx nervosum Extract Ameliorates Chemical-Induced Oxidative Stress in Early Stages of Rat Hepatocarcinogenesis

DOI:http://dx.doi.org/10.7314/APJCP.2014.15.6.2825

Cleistocalyx nervosum Extract Ameliorates Chemical-Induced Oxidative Stress in Early Stages of Rat Hepatocarcinogenesis

Ito N, Tamano S, Shirai T (2003). A medium-term rat liver tumor formation and decreased glutathione content in livers of carcinogen treated rats. The treatment with C nervosum extract in diethylnitrosamine and phenobarbital treated rats modulated TBARs and glutathione levels. Prior and Wu reported that anthocyanins presented radical scavenging activity (PriorWu, 2006) and Thoppil et al. also reported that an anthocyanin-rich extract from black currant exerted chemopreventive action against diethylnitrosamine-induced hepatocarcinogenesis by attenuating oxidative stress through activation of Nrf2 signaling pathway (Thoppil et al., 2012). In addition, our group found that C nervosum acted as an antioxidant scavenger (Thuschana, et al., 2012) and antioxidant enzyme enhancer (Taya et al., 2009; Thuschana, et al., 2012). Therefore, C nervosum extract containing anthocyanins might modulate oxidative status via acting as antioxidant scavenger and antioxidant enzyme enhancer in rat liver.

Phenobarbital, a tumor promoter, has a strong inhibiting effect on cellular antioxidant defense system components such as superoxide dismutase, catalase and glutathione (YadavBhatnagar, 2007). Superoxide dismutase accelerates transformation of superoxide radicals to hydrogen peroxide, while catalase or glutathione peroxidase converts hydrogen peroxide to water. Depletion in activity of these antioxidant enzymes can be due to enhanced radical production during diethylnitrosamine and phenobarbital metabolism. In the present study, hepatic TBARs levels increased in carcinogens treated rats, which were presumably associated with increased free radicals, confirming the suggestion that these free radicals inhibited the activities of superoxide dismutase, catalase, and glutathione peroxidase. The superoxide radical itself is also capable of inhibiting the activity of superoxide dismutase and catalase. The observed reduction in the enzyme activities may be attributed to reactive oxygen species (Jeyabal et al., 2005). The increased hepatic TBARs level in carcinogen treated rats was indicative of increased oxidative stress. The decreased catalase and glutathione peroxidase activities in carcinogen treated rats indicated alterations in anti-oxidant enzymes under conditions of oxidative stress. The C nervosum extract significantly increased catalase activity in carcinogen treated rats, while only doses of 1,000 mg/kg bw significantly increased glutathione peroxidase activity. The recovery of catalase and glutathione peroxidase activities may also be due to the anti-oxidant function of the C nervosum extract. During hydrogen peroxide scavenging, glutathione reduced form (GSH) is oxidized to glutathione oxidized form (GSSG) by glutathione peroxidase. The conversion of GSSG to GSH is catalyzed by glutathione reductase. However, the activity of glutathione reductase was significantly increased in carcinogen treated rats. In carcinogen treated rats, the increased glutathione reductase activity might have resulted in the decline of glutathione peroxidase activity and content of glutathione reduced form. Thus, the chemopreventive effect of C nervosum extract containing anthocyanins might be due to its action as an antioxidant enhancer. Heme oxygenase-1 is a stress-responsive enzyme widely distributed in many mammalian tissues and is responsible for the breakdown of heme to biliverdin, free iron and carbon monoxide (MainesGibbs, 2005). Heme oxygenase-1 expression is induced by a wide variety of stimuli including heme, heavy metals, cytokines and chemical carcinogens (McNally et al., 2006). Moreover, heme oxygenase-1 has been considered to be a potential therapeutic target for a number of chemopreventive agents (Prawan et al., 2005). However, heme oxygenase activity was unchanged across treatment groups in the present study. C nervosum extract may exert its chemopreventive effect via glutathione dependent enzymes.

Our findings indicated that C nervosum extract decreased preneoplastic lesions of chemically-induced rat hepatocarcinogenesis by reduction of lipid peroxidation and increase of some antioxidant markers. Hence, the chemopreventive effect of C nervosum might be due to either its radical scavenging properties or to antioxidant enzyme induction.

Acknowledgements

This work was supported by the grants from the Endowment Fund for Medical Research, Faculty of Medicine, Chiang Mai University (1/2553), Center of Excellence for Innovation in Chemistry, (PERCH-CIC) (2551) and the Graduate School, Chiang Mai University.

References

Fujiwara Y (2003). Plasma levels of thiobarbituric acid reactive substances (TBARs) of the employee with type 2 diabetes mellitus with multiple lacunar lesions. JOMT, 51, 3-10.
Sirinya Taya et al

Phytomedicine, 11, 309-14.

