MINI-REVIEW

Are Beta Blockers New Potential Anticancer Agents?

Shahid Akbar¹*, Mansour Saleh Alsharidah²

Abstract

β-Blockers have been one of the most widely used and versatile drugs for the past half a century. A new potential for their use as anti-cancer drugs has emerged in the past few years. Various retrospective case control studies have been suggestive that use of β-blockers before the diagnosis of cancer could have preventive and protective effects against non-small cell lung carcinoma, melanoma, and breast, pancreatic and prostate cancers. Experimental and clinical observations are still inconclusive with some inconsistent findings. However, indications are pointing toward a positive role of some β-blockers against certain forms of cancers. This mini review is an effort to present the up to date published results of case-control studies and experimental findings.

Keywords: Beta - blockers - adrenoceptors - anticancer - breast - ovarian - pancreatic - prostate

Asian Pac J Cancer Prev, 15 (22), 9567-9574

Introduction

Since their arrival on the clinical scene, β-adrenoceptors (β-ARs) antagonists or β-blockers as they are commonly known, have proved to be one of the most versatile and widely used drugs in clinical practice. Although dichloroisoproterenol (DCI) was the first β-blocker synthesized by Elli Lilly, it was pronethalol that was the first β-blocker tested for clinical use, but due to the finding that it was carcinogenic in mice it was never approved for clinical use. The first β-blocker, propranolol that was free of carcinogenic activity and entered into clinical practice in 1964 for the treatment of angina pectoris was introduced by Sir James Black (Dr. Black received the Nobel Prize for his invention in 1988 and was knighted by the Queen of England in 2000). It was a revolutionary drug that created a new category of drugs for the treatment of cardiovascular diseases.

Since their introduction, β-blockers have gone a sea change both in terms of their nature and properties and their therapeutic uses. Propranolol was a non-selective antagonist that competitively blocked both β1 and β2 adrenergic receptors, and thus produced certain adverse effects due to β2 receptors blockade, such as potentiation of effects of hypoglycemic drugs, causing bronchoconstriction in sensitive individuals and masking warning signs of hypoglycemia (mainly β1 effects). It was also a highly lipophilic drug that crossed the blood brain barrier and produced CNS adverse effects. Atenolol, a hydrophilic and β1-selective (cardioselective) β-blocker that did not cross into the CNS and did not produce adverse effects due to β2 receptors blockade, was approved for clinical use in 1976 and changed the dynamics of treatment of cardiovascular diseases once again. The breadth of β-blockers use since their introduction has expanded from the treatment of angina pectoris to include hypertension, cardiac arrhythmias, myocardial infarction, prophylaxis of migraine headaches, essential tremors, situational anxiety, cardiac manifestations of thyrotoxicosis, etc., and even heart failure for which their use was contraindicated for almost a quarter of a century. Now β-blockers, especially bisoprolol, carvedilol and metoprolol, are considered beneficial in heart failure cases and are credited to reduce morbidity and mortality of heart failure patients (Packer et al., 1996; Hunt et al., 2005).

However, the observation that β-blockers produced an anticancer effect and improved survival of cancer patients opened a new front of investigations of the role of β-blockers in various cancers. In fact it was the serendipitous discovery of anti-angiogenic activity of propranolol that was observed in cases of severe infantile capillary hemangiomas that regressed completely with the use of propranolol (Leaute-Labreze et al., 2008), that served the forerunner for observational and retrospective case-control studies of cancer patients who used β-blockers. Meanwhile, Fitzgerald (2009) put forth the hypothesis that norepinephrine was an etiological factor for a number of cancers and he presented his arguments in a following publication (Fitzgerald, 2010), urging for retrospective studies to find a link between cancer and norepinephrine. Although, β-blockers are being regularly used in the treatment of hemangiomas, we have left them out from the purview of this review.

This mini review covers what has so far been reported in the scientific literature about the influence of β-blockers against different forms of cancers and how a limited number of experimental studies reconcile with clinical observations.

¹Department of Pharmacology, College of Pharmacy, ²Department of Physiology, College of Medicine; Qassim University, Buraidah, Saudi Arabia *For correspondence: shahidakbar@sbcglobal.net

DOI:http://dx.doi.org/10.7314/APJCP.2014.15.22.9567
Do Beta Blockers Have Potential as Anti-Cancer Agents?
Putative Role of Catecholamines in Cancer (in vitro and in vivo studies)

It has been observed that all cancers on which β-blockers have shown a suppressive effect express β-ARs (Perez-Sayans et al., 2010). β-ARs signaling pathways play a significant role in cell proliferation, differentiation and cell migration (Herlenius and Lagercrantz, 2001; Kim et al., 2008). β-ARs stimulation by norepinephrine (noradrenaline)(NE) and epinephrine (adrenaline), known as stress hormones, acting through cAMP/PKA signaling pathways, is pro-angiogenic and pro-metastatic in ovarian tumors (Masur et al., 2001; Drell et al., 2003); this has been suggested as the link between stress and cancer (Cole and Sood, 2012). Both the synthesis and release of norepinephrine and epinephrine are regulated by nicotinic acetylcholine receptors (α7nAChRs)(Schuller, 2009). Interestingly, the inhibitory neurotransmitter γ-aminobutyric acid (GABA) also serves as an inhibitor of β-ARs stimulation-mediated signaling cascade by blocking activation of adenyl cyclase via inhibitory G-protein-coupled GABA receptor agonists (Wojcik and Neff, 1984; Schuller et al., 2008). Epinephrine increases proliferation of lung adenocarcinoma cells in vitro, which is mediated by increase in intracellular cAMP (Park et al., 1995). Several other in vitro and in vivo studies have shown that catecholamines promote tumor cell growth and metastases by promoting production of vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP2 and 9) and interleukins (IL-6, IL-8) which are inhibited by β-blockers (Sood et al., 2006; Yang et al., 2006; Yang et al., 2009; Quoc Lu'o’ng and Nguyen, 2012). Epinephrine also stimulates proliferation of human colon adenocarcinoma HT-29 cells with enhanced expression of COX-2 and VEGF. This proliferative effect is blocked by β1-selective blocker atenolol and β2-selective blocker ICI 118,551 (Wong et al., 2011). Administration of isoproterenol (a nonselective β-ARs agonist) increased metastases 22-fold in a mouse model of breast cancer (Sloan et al., 2010). Human prostate cancer cells show an increase in cAMP level in response to β-ARs agonists in a descending order from terbutaline to isoproterenol to epinephrine to norepinephrine. The nonselective β-blockers, propranolol and CGP 12177 block this activity 80-96%, which suggests a predominant role of β2-adrenoreceptors in these cell types (Nagmani et al., 2003). Norepinephrine significantly increases β2-ARs expression, while propranolol inhibits the NE-induced over-expression of β2-ARs (Shang et al., 2009). NE-augmented metastases of human prostate carcinoma cells in a mouse model of prostate cancer were also inhibited by propranolol (Palm et al., 2006). Oral squamous cell carcinoma expresses β2-ARs that are significantly correlated with cervical lymph nodes metastasis, tumor size and clinical stage of the tumors. Organs rich in catecholamine contents, such as adrenal medulla and brain, also serve as chemoattractants to cancer cells and serve as sites for metastasis (Schouten, 2002).

Pasquier et al. (2011) reported dose-dependent anti-proliferative and anti-angiogenic effects of propranolol in several human cancer and normal cell lines in Metrogel assays. Propranolol, though, exhibited synergistic, additive or antagonistic effects on cell proliferation in different cell lines, when used in combination with 5-fluorouracil or paclitaxel. It also produced a very significant and sustained antitumor effects and increased survival of experimental breast cancer-bearing animals with these combinations. A subset of breast adenocarcinomas expresses β-ARs that regulate a downstream arachidonic acid-mediated signal transduction pathway (Plummer et al., 2004). However, Perez Pinero et al., (2012) recently reported a contradictory finding that activation of β-ARs by nonselective β-ARs agonist isoproterenol (isoproterenol) and β2-selective agonist salbutamol (albuterol) decreases proliferation of breast cancer cells, and the inhibitory effect of these agonists was antagonized by propranolol.

Nicotine stimulates gastric cancer cells growth through activation of β-ARs and downstream up-regulation of COX-2 (Shin et al., 2007). Similar increase in proliferation and up-regulation of β-ARs and COX-2 expression was observed by chloroform extract of cigarette smoke in human esophageal squamous carcinoma EC 109 cells (Li et al., 2009) and by epinephrine of HKESC-1 cells (Liu et al., 2008). Both the stimulatory action on cells proliferation and COX-2 expression are abolished by β1-selective and β2-selective β-ARs antagonists. +-(methyl-N-nitrosamino)-1-(3-pyridyl)-1-butane (NNK) is a highly carcinogenic nitrosamine which is a tobacco component formed after nitrosation of nicotine. NNK is an agonist for both β1- and β2-selective β-ARs (Schuller and Orloff, 1998) and thus activates cAMP-dependent pathway and additionally stimulates the release of norepinephrine/epinephrine by binding to alpha7nAChRs (Al-Wadei et al., 2009). NNK stimulates the proliferation of human lung adenocarcinoma cells and thus, provides the link between smoking and smoking-associated cancers (Schuller, 2010). NNK-induced pancreatitis is a risk factor for pancreatic ductal adenocarcinoma (PDAC), which is one of the deadliest cancers and is usually unresponsive to existing therapy. Pancreatic cancer cells express both β1- and β2-ARs but predominantly β2-ARs and overexpress COX-2 and 5-lipoxygenase enzymes (Weddle et al., 2001). Stimulation of pancreatic cancer cells by NE results in cell proliferation and migration and increase in the expression of MMP-2, MMP-9 and VEGF, which are completely abolished by propranolol (Guo et al., 2009; Huang et al., 2012). The β-ARs stimulation effect in pancreatic cancer cells is reported to be mediated through cAMP, protein kinase A (PKA) and mitogen-activated protein kinase (MAPK). ICI 118,551, a β2-ARs antagonist, significantly suppresses cell invasion and proliferation by inhibiting cAMP/PKA and Ras, and significantly alters VEGF, COX-2, MMP-2 and MMP-9 expression. Propranolol significantly suppresses cell invasion and proliferation in comparison to metoprolol (Zhang et al., 2010). ICI 118,551 also significantly induces pancreatic carcinoma cell GI/S phase arrest and causes cells death but not the β1-selective metoprolol (Zhang et al., 2001), and potentiates the anti-proliferative and apoptotic effects of gemcitabine on human pancreatic cancer cells (Shan et al., 2011). β2-Selective antagonist, butoxamine causes significantly more apoptosis of pancreatic cancer cells than propranolol.
and the least is caused by metoprolol (Zhang et al., 2009). Propanolol also inhibits proliferation of human gastric adenocarcinoma cell lines (SGC-7901 and BGC-823), induces apoptosis in both cell lines, decreases the level of nuclear factor kB and down-regulates VEGF, COX-2, MMP-2 and MMP-9 expression (Liao et al., 2010a,b). Schuller and Al-Wadei (2012) suggested role of β-ARs stimulation in the growth of pulmonary adenocarcinomas and pancreatic ductal adenocarcinomas, as both cell types share the ability to release cAMP-dependent bicarbonate. Involvement of β3-adrenoceptors in human colon cancers has also been suggested as β3-ARs mRNA expression is twice as much in cancer tissue as in the normal tissue (Perrone et al., 2008).

Emotional and psychological stresses evoke excessive release of epinephrine/norepinephrine and intrusive thoughts, such as after the diagnosis of cancer, which can exacerbate and prolong adrenergic sympathetic system activation. Users of β-blockers in newly diagnosed breast and colorectal cancer patients are reported to have 32% fewer intrusive thoughts (Lindgren et al., 2013). Likewise, excessive catecholamines are released during perioperative period of the surgery of primary tumor, due to anxiety and fear of the surgery, the disease and death that can facilitate the progression of preexisting micro-metastases and may initiate the new ones (Neeman et al., 2012), and are suspected of enhancing the chances of postsurgical cancer recurrence (Glanser et al., 2010). Observational studies also suggest that surgery per se can increase the risk of cancer in patients without a history of clinical cancer and this is attributed to catecholamine surge due to the stress of surgery (Goldstein and Mascielli, 2011). Norepinephrine levels of ovarian tumors are high with the advanced stage and higher grade of the tumor, and even higher in patients who lack social support, a significant factor for depressed mood, anxiety and stress (Lutgendorf et al., 2011). Even in animals subjected to stress, the tumor growth is augmented which is completely prevented by pretreatment with propranolol (Hasegawa and Saiki, 2002). Thus, a positive correlation between the level of stress hormones and growth of various cancers is overwhelmingly suggestive.

Clinical Observations and Retrospective Studies

In vitro studies cannot always be extrapolated to expected results in humans, and human studies are essential to verify and establish the veracity of a phenomenon or an effect. However, observational studies reported so far about the beneficial effects of β-blockers are inconclusive. Most of these retrospective case-control studies have been published in the past few years. Nevertheless, there is a growing body of clinical evidence, based on these studies that use of β-blockers helps in reducing the tumor progression, formation of metastases, recurrence and cancer mortality, and increases chances of disease-free survival from various types of cancers. Over 90% of all cancer deaths are due to metastases and not due to the primary cancers, and cancer cells migration from the original site is a prerequisite for metastases (Palm et al., 2006). Norepinephrine increases this locomotion of SW 480 colon carcinoma cells via stimulation of β2-ARs, as the increase is inhibited by nonselective β-blocker propranolol and not by the β1-blocker atenolol (Masur et al., 2001). However, in pancreatic cancer cells, NE reduces the migratory activity, which is hypothesized to be due to an increase in cAMP (Stock et al., 2013).

Several observational studies have suggested a preventive and protective role of β-blockers for certain types of cancer, as the increase is inhibited by nonselective β-blocker propranolol and not by the β1-blocker atenolol (Masur et al., 2001). However, in pancreatic cancer cells, NE reduces the migratory activity, which is hypothesized to be due to an increase in cAMP (Stock et al., 2013).

Several observational studies have suggested a preventive and protective role of β-blockers for certain types of cancer, such as breast (Powe et al., 2010; Ganz et al., 2011), prostate (Perron et al., 2004; Algazi et al., 2006), ovarian (Diaz et al., 2012), melanoma (De Giorgi et al., 2011, 2012) and non-small-cell lung carcinoma (Wang et al., 2013). Even, in diabetic patients a significantly reduced overall risk of cancer has been reported with β-blocker use (Monami et al., 2013). However, in a retrospective study using UK’s primary care database, Shah et al. (2011) compared the survival rate of newly diagnosed cancer (solid tumors) patients who were regularly treated with β-blockers before the diagnosis with those who received other antihypertensive drugs, and reported a poor effect of β-blockers on survival. Among the β-blocker users, only 13% of patients were prescribed propranolol and the rest used either atenolol (75%) or other β-blockers. This study was in contrast to a prospective follow up for an average 10 years of patients with cardiovascular disease by Algazi et al. (2004) who reported a reduced risk of cancer in ever-user of β-blockers patients compared to never-users.

Thirty percent of all treated breast cancer patients develop metastases and 90% of breast cancer deaths are due to these metastases (Sporn, 1996). Various authors have so far reported inconsistent observations where some studies even suggested an increase in breast cancer incidence in patients using β-blockers. Use of β-blockers for hypertension before the diagnosis of breast cancer is suggested to significantly reduce metastasis development, tumor recurrence and cancer-related mortality on years of follow up, compared to those who did not use β-blockers. In 49 British women with breast cancer who used β-blockers for hypertension treatment before the diagnosis of breast cancer, metastases, tumor recurrence and cancer-related mortality on 10-years follow-up was significantly less, compared to women who used other antihypertensive drugs or were non-hypertensive control (Powe et al., 2010). Another observational study from Northern California found β-blockers use associated with a lower risk of recurrence and breast cancer-related mortality. Combined use of ACE inhibitors with β-blockers, though, increased the overall mortality (Ganz et al., 2011). Use of β-blockers or other antihypertensive drugs was not found associated with increase in breast cancer in a study of Danish women (Fryzek et al., 2006).

However, another prospective observational study in 18,733 Danish women diagnosed with non-metastatic breast cancer reported no reduced risk of cancer recurrence in β-blocker users but a slight increase in recurrence associated with metoprolol and sotalol use (Sorensen et al., 2013). Contrarily, protection by β-blockers was reported by Melhem-Bertrandt et al., (2011) who reviewed records of women diagnosed with triple-negative breast cancer (TNBC) and who were using β-blockers before...
Multiple cellular processes are suggested to be involved in the initiation, progression and metastases of cancers through β-receptors stimulation. β-ARs stimulation leads to increased cAMP formation and activation of PKA/CREB, which cause pro-oncogenic effects by inhibition of apoptosis, angiogenesis, invasion and metastasis (Al-Wadei et al., 2012). Administration of β-blockers has been associated with reduced progression of breast cancer, improved survival of melanoma patients, and reduced risk of hepatocellular carcinoma. However, observational studies did not find any protective effect of β-blockers in colorectal cancer patients (Jansen et al., 2012; Hicks et al., 2013) except in stage IV colorectal cancer patients where β-blocker users had a significantly longer overall and cancer-related survival than non-users (Jensen et al., 2014).

β-blockers use by patients suffering from non-small-cell lung carcinoma (NSCLC) and undergoing radiotherapy had a significantly improved distant metastasis-free survival, disease-free survival and overall survival compared to nonusers of β-blockers (Wang et al., 2013). Even in a short follow-up (17.8 months) of only 35 patients of NSCLC with metastases, who used β-blockers during chemotherapy, mainly metoprolol (80%), had a significantly better survival than nonusers (19.25±2.87 months vs 13.20±2.37 months)(Aydin et al., 2013). A univariate analysis found use of nonselective and selective β-blockers during the perioperative period to reduce recurrence-free and overall survival of patients with NSCLC, but in a multivariate analysis, this was not found to be true (Cata et al., 2014). However, propranolol use decreased the risk for hepatocellular carcinoma (HCC) by more than 50% in 3-years follow-up and by more than 80% after 5-years follow-up in patients who suffered from compensated viral C (HCV) cirrhosis and were prescribed propranolol for esophageal varices (Nkontchou et al., 2012).

Use of β-blockers, but not other antihypertensive drugs, significantly improved disease-free and overall survival of patients with malignant melanoma (De Giorgi et al., 2012). One year or more use of β-blockers decreased progression of thick malignant melanoma by 90% and none of the 30 users of β-blockers died over a median 2.5-years follow-up, whereas 24 out of 91 untreated patients died during the same period, there was a 36% risk reduction for each year of β-blocker use (De Giorgi et al., 2011). An extended follow-up of 4-years of more melanoma patients (79 patients) using β-blockers, usually for hypertension, confirmed that each year of β-blockers use reduced the risk of death by 38% compared to nonusers. Similar protection was not afforded by the use of other antihypertensive drugs (De Giorgi et al., 2013). In a Danish study with a median follow-up of 4.9-years and a median β-blocker use within 90 days of melanoma diagnosis, both melanoma deaths and all-cause mortality were decreased (Lemeshow et al., 2011). However, a Dutch study found no significant effect of β-blockers use, either duration or dosage, on survival of melanoma patients who started using β-blockers after melanoma diagnosis (Livingstone et al., 2013).

Suggested Mechanism(s) of Action of Anticancer Effects

Multiple cellular processes are suggested to be involved in the initiation, progression and metastases of cancers through β-receptors stimulation. β-ARs stimulation leads to increased cAMP formation and activation of PKA/CREB, which cause pro-oncogenic effects by inhibition of apoptosis, angiogenesis, invasion and metastasis (Al-Wadei et al., 2012). Administration of
epinephrine or metaproterenol in rats suppresses natural killer (NK) cells activity (Shakhar and Ben-Eliyahu, 1998; Ben-Eliyahu et al., 2000). Excessive perioperative release of catecholamines and prostaglandins causes post-surgery immune suppression by decreasing (NK) cells cytotoxicity (Benish et al., 2008). The trauma of surgery suppresses cell-mediated immunity proportional to the extent of surgery and damage to tissue (Shakhar and Ben-Eliyahu, 2003; Goldfarb and Ben-Eliyahu, 2006). This perioperative stress and the resulting increase in stress hormones, epinephrine and norepinephrine, has not yet been recognized clinically to have any bearing on post-surgical fate of the tumor. However, various animal studies have shown that stress responses affect the recurrence and survival. Surgery reduces the NK cell cytotoxicity, circulating lymphocyte concentrations and increases corticosterone levels and COX-2 expression, which are inhibited by pretreatment with propranolol and etodolac, a COX-2 inhibitor (Glasner et al., 2010). Mice implanted with Lewis lung carcinoma and subjected to rotational stress show increased lung metastasis, which are prevented by pretreatment with reserpine but not by α-adrenoceptor blocker phenoxybenzamine or β-blocker propranolol (Perissin et al., 1996). Surgical stress also significantly increased the ovarian tumor weight, microvessels density and expression of vascular endothelial growth factor (VEGF) in mice after intraperitoneal tumor cell injection; propranolol treatment blocked these effects (Lee et al., 2009). Tumor necrosis factor-alpha (TNFα) is involved in the generation of cytotoxic T lymphocyte (CTL) activity and inhibition of CTL generation by norepinephrine (NE) involves inhibition of TNFα production; propranolol inhibits both NE-induced decrease in TNFα and inhibition of CTL generation (Kalinchinenko et al., 1999).

Unlike normal cells, metastatic cancer cells do not undergo programmed cell death (apoptosis) called anoikis after detaching from their surrounding extracellular matrix. In in vitro studies, three β-blockers (carvedilol, nebivolol and propranolol) potentiated the anti-angiogenic, anti-mitochondrial, anti-mitotic and pro-apoptotic effects of vincristine, and significantly increased tumor regression in a TH-MYCN mouse model of neuroblastoma, resulting in a four-fold increase in median survival when treated in combination with vincristine (Pasquier et al., 2013). Overexpression of arachidonic acid-metabolizing enzymes, COX-2 and lipoxygenase, has been reported in breast, lung, pancreas and colon cancers, which is believed to be under β-adrenergic control (Cakir et al., 2002). Almost three-fourths of patients with primary breast cancer and more than 90% with positive lymph nodes metastases overexpress COX-2, compared to 0% in those with fibroadenoma or benign breast disease (Jana et al., 2012). However, various clinical observations pointed to the involvement of β2-receptors than β1-receptors, because users of β1-selective blockers did not show the protective effect of β-blockers (Barron et al., 2011). Pulmonary adenocarcinoma, the most common histologic type of lung cancer, can be reproduced in hamsters by nitrosamine 4-(methylnitrosamo)ino-(1-(3-pyridyl)-1-butane (NNK), a tobacco component. NNK-induced pulmonary adenocarcinomas are multiplied if they are chronically exposed to epinephrine, through increased cAMP, and significantly inhibited by propranolol injection prior to each NNK injection (Schuller et al., 2000).

Conclusions

The jury is still out to firmly establish the nature of β-blockers, selective or nonselective, or any specific ones and the cancers they could be beneficial in. Some investigators have even disputed the reported beneficial effects of β-blockers on grounds that the benefits observed in these patients are due to the simultaneous use of aspirin by cancer patients and not by the use of β-blockers per se (Holmes and Chen, 2012; Holmes et al., 2013). However, β-blockers use was shown to reduce prostate cancer-specific mortality in Norwegian patients, independent of the use of aspirin or statins (Grytli et al., 2014). The debate is likely to continue for some time until more corroborative retrospective studies are reported, as prospective, double-blind studies are not possible under this scenario when β-blockers use before the diagnosis of cancer is reported to be protective rather than their use after the diagnosis. Therefore, reliance on retrospective case-control studies is the only option available at this time. Also, presence of comorbidities other than hypertension should be taken into account when analyzing the effects of β-blockers on various forms of cancers. We are of the opinion, though, that these agents could surprise the scientific and medical community once again and protection from cancer might be added to their repertoire of approved clinical use.

References

Cakir Y, Plummer HK 3rd, Tithof PK, Schuller HM (2002). Beta-adrenergic and arachidonic acid-mediated growth regulation...
Shakhar G, Ben-Eliyahu S (2003). Potential prophylactic measures against postoperative immune-suppression: could...

Wojcik WJ, Neff NH (1984). Gamma-Aminobutyric acid B receptors are negatively coupled to adenylate cyclase in brain, and in the cerebellum these receptors may be associated with granule cells. *Mol Pharmacol*, **25**, 24-8.

