Effect of GST Gene Polymorphisms in Patients with Acute Myeloid Leukemia: A Prospective Study

Lei Zhou1&, Yan-Yun Zhu2&, Xiao-Dong Zhang3, Yang Li1, Zhuo-Gang Liu1*

Abstract

Glutathione S-transferase (GST) enzyme levels are associated with risk of many cancers, including hematologic tumors. We here aimed to investigate the relationships between GSTM1, GSTT1 and GSTP1 polymorphisms and the risk of AML. Genotyping of GSTs was based upon duplex polymerase-chain-reactions with the confronting-two-pair primer (PCR-CTPP) method in 163 cases and 204 controls. Individuals carrying null GSTT1 genotype had a 1.64 fold risk of acute leukemia relative to a non-null genotype (P<0.05). A heavy risk was observed in those carrying combination of null genotypes of GSTM1 and GSTT1 and GSTP1 Val allele genotypes when compared with those carrying wild genotypes, with an OR (95% CI) of 3.39 (1.26-9.26) (P<0.05). These findings indicate that genetic variants of GST and especially the GSTT1 gene have a critical function in the development of AML. Our study offers important insights into the molecular etiology of AML.

Keywords: Glutathione S-transferase - polymorphism - acute myeloid leukemia - risk

Asian Pacific J Cancer Prev, 14 (6), 3861-3864

Introduction

Acute leukemia includes acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) (Mandegary et al., 2011). AML is the most common acute leukemia affecting adult (Jiang et al., 2011). The mechanism of this disease is the abnormal white blood cells accumulating in the bone marrow, and thus interferes with producing normal blood cells.

Despite previous several studies reported the mechanisms of leukemia, the real reasons are still not known. As other cancer, AML is a complex disease caused by the combination effect of environmental and hereditary factors, such as chemical exposure, ionizing radiation and genetics (Gunz et al., 1969; Evans et al., 1972; Le Beau et al., 1986; Thirman et al., 1993). Previous studies reported that DNA damage by the reactive oxygen species in hematopoietic precursor cells influence the carcinogenesis of several cancers, including acute leukemia.

Xenobiotics can be detoxified by phase II enzymes, such as GSTM1, GSTT1 and GSTP1 which have been suggested to be involved in detoxification of polycyclic aromatic hydrocarbons (PAHs) and benzo[a]pyrene (Schneider et al., 2004), which could detoxify carcinogens and reactive oxygen species (Rebeck, 1997). Individuals who have homozygous deletions for GSTM1, GSTT1 and GSTP1 gene have reduced enzyme function. Lack of these enzymes may potentially increase cancer susceptibility due to a decreased ability to detoxify carcinogens such as benzo[a]pyrene-7,8-diol epoxide, the activated form of benzo[a]pyrene. The missing substitution Ile105Val results from an A3G base substitution at nucleotide 313. The Val105 form of the GSTP1 enzyme may be 2-3 times less stable than the canonical Ile105 form (Johansson et al., 1998) and may be associated with a higher level of DNA adducts (Ryberg et al., 1997). Numbers of published studies have focused on GSTM1, GSTT1 and GSTP1 genetic variation with respect to various cancers. A few studies have shown that significant association of GST polymorphisms with AML, and the results are contradictory (Crump et al., 2000; Naoe et al., 2000; Rollinson et al., 2000; D’Alò et al., 2004; Seedhouse et al., 2004; Taspinar et al., 2008; Das et al., 2009; Mandegary et al., 2011). But there is no study reported their association with AML in Chinese population. Whether GSTM1, GSTT1 and GSTP1 polymorphisms are risk factors for AML in Chinese population remains largely uncertain.

Therefore, the aim of the present study was to investigate the relationships between GSTM1, GSTT1 and GSTP1 polymorphisms and the risk of AML, and investigate whether GSTM1, GSTT1 and GSTP1 polymorphisms are novel candidate biomarkers of AML.

Materials and Methods

This case-control and prospective study recruited patients first diagnosed with AML at Shengjing Hospital Affiliated of China Medical University and No.202 Hospital of PLA, Shenyang, Department of Internal Medical Oncology, General Hospital of PLA, Beijing, China *Equal contributors *For correspondence: liuzg_677@163.com

1Department of Hematology, Shengjing Hospital Affiliated of China Medical University, 2Department of Hematology, No.202 Hospital of PLA, Shenyang, 3Department of Internal Medical Oncology, General Hospital of PLA, Beijing, China *Equal contributors *For correspondence: liuzg_677@163.com
Hospital of PLA, China, between March 2009 and January 2012. 163 AML patients were consecutively collected between March 2009 and January 2012, and finally 187 patients agreed to participate into this study with a participation rate of 87.2%. The diagnosis of AML is often demonstrated by an increased number of myeloblasts in the bone marrow or peripheral blood according to the WHO criteria. Acute leukemia is diagnosed when a 200-cell differential reveals the presence of 20% or more myeloblasts in a marrow aspirate or in blood (Vardiman et al., 2002). All patients with newly diagnosed primary AML in the hospital were invited for face to face interview within one month after diagnosis.

204 age-matched control subjects (±5 years old) were recruited from individuals attending Shengjing Hospital Affiliated of China Medical University and No.202 Hospital of PLA, China, for routine health examinations. Control subjects with known blood disorders or any other cancers were excluded from the study. All study participants completed a structured questionnaire during a face-to-face interview with medical staff, and 5 ml venous blood was collected in ethylenediamine tetra-acetic acid (EDTA) coated tubes and stored at -20℃ before use.

The study was approved by the Ethics Committee of Shengjing Hospital Affiliated of China Medical University, and all participants provided written informed consent.

Genomic DNA Exaction
For DNA extraction, 5 ml blood was provided by each collected subjects. Blood samples were stored at -20℃. DNA was extracted from whole blood or lymphoblastoid cell lines using the Qiagen Blood Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. The genotypes of GSTs (GSTM1, GSTTI and GSTP1) were determined from DNA directly extracted from whole blood.

Statistical Methods
All analysis was performed by using the STATA statistical package (version 9, STATA, College Station, TX). Hardy-Weinberg equilibrium of alleles at controls was assessed using exact tests. Categorical variables were compared with use of the chi-square test or Fisher’s exact test (when one expected value was <5). Odds ratios (OR) and their corresponding 95% confidence intervals (CI) were used to assess the effect of each gene on AML risk. Unconditional logistic regression was used to estimate ORs and their 95% confidence intervals. A P-value < 0.05 was considered statistically significant. All statistical analyses were performed using SPSS® version 11.0 (SPSS Inc., Chicago, IL, USA) for Windows®.

Results
Of the 163 AML cases, 87 (53.4%) were males and...
null genotype IIe/IIe and GSTP1 Val/Val genotypes, with a 3.39-folds risk
compared to the wild IIe/IIe genotype, GSTP1 Val/Val
carriers had a non-significant risk of AML, with OR (95% CI) of 1.28 (0.57-2.84)
(P>0.05). Similarly, null GSTM1 and null GSTT1
genotypes were in Hardy-Weinberg equilibrium among the controls, and the P values were
0.36, 0.12 and 0.19 for GSTM1, GSTTI and GSTP1, respectively. Null GSTM1 carriers had a 1.20 fold risk
of acute leukemia compared with non-null genotype, but
no significant association was found (P>0.05). Similarly, compared to the wild Ile/Ile genotype, GSTP1 Val/Val
carriers had a non-significant risk of AML, with OR (95% CI) of 1.64 (1.03-2.63) (P>0.05). While, we found those
carrying null GSTT1 genotype had a 1.27 fold risk of
acute leukemia relative to non-null genotype (P<0.05).

The interaction effects of polymorphisms in GSTT1,
GSTM1 and GSTP1 loci on the risk of AML were shown in Table 2. Individuals carrying null GSTM1, null GSTTI
and GSTP1 Val/Val showed a heavy risk of AML when
compared with those carrying non-deleted GSTM1 and
GSTT1 and GSTP1 Ile/Ile genotypes, with a OR (95% CI) of 3.39 (1.26-9.26) (P<0.05).

Discussion

In this case-control study, neither the GSTM1 nor
GSTP1 deletion polymorphisms were associated with
risk of AML. However, our study suggests that a positive
association between the GSTT1 null genotype and the risk
of AML, and a heavy risk was observed in those carrying
combination of null genotypes of GSTM1 and GSTT1 and
GSTP1 Val allele genotypes when compared with those
carrying wild genotypes. This study indicated GSTs
polymorphisms were promising candidate biomarkers for
evaluating the AML risk.

GSTs belong to a super-family of detoxification
enzymes, which play a role in resisting a large variety of
chemical carcinogens and environmental toxicants. The
null genotype of GSTM1 and GSTT1 and GSTP Val/
Val genotype may lower the expression and activity of
genotypes, and these genotypes are known to be associated
with increasing incidence of certain cancers, such as head
and neck, lung and bladder cancer (Benhamou et al.,
2002; Engel et al., 2003; Hashibe et al., 2003). The main
reason might be the inefficient carcinogen detoxification
and therefore a higher risk of developing cancer. Previous
meta-analysis studies indicated that null GSTT1 genotype
might contribute to increased risk of various cancers, such
as breast cancer, lung cancer, gastric cancer and liver
cancer (Ma et al., 2013; Yang et al., 2013a; Yang, 2013b;
Zhao et al., 2013).

Previous several studies reported the association
between GSTT1 polymorphisms and risk of AML (Crump
et al., 2000; Arruda et al., 2001; Liu et al., 2005; Kim et
al., 2012), but the results are inconsistent. Crump et al.
reported a case-control study conducted in the United
States, and the results do not the hypothesis that the
GSTT1 gene deletion is related to the risk of AML (Crump
et al., 2000). Similarly, Liu reported variation of GSTT1
genotype is not associated with the susceptibility of AML
in a Chinese population (Liu et al., 2005). While a case-
control study conducted in Brazil with 124 cases reported
a moderate association between GSTT1 null genotype
and risk of AML (Arruda et al., 2001), and Kim et al. also
reported a positive association in Korean population (Kim
et al., 2012). In our study, we did not find the association
of GSTM1 null and the GSTP1 Val/Val genotypes with AML,
while we found GSTT1 null genotype was associated with
increased risk of AML. The risk becomes strong when
possessing of all three GSTT1 null, GSTM1 null and GSTP1 Val/Val genotypes, with a with a 3.39-folds risk
of AML. The results of GSTs and risk of acute leukemia
are conflicting in studies conducted in different ethnicities.
The reason might be inducted by ethnic difference, case
selection and variation of clinical characteristics. Further
studies are strong needed to validate the association
between variation of GSTT1 and AML risk.

Strengths of this study include comprehensive face-to-
face interviews with all cases and controls, and the DNA
was gained in all cases and controls. The allele frequencies
for all the studied GSTs polymorphisms were similar to
those reported from Chinese population (Jing et al., 2012;
Song et al., 2012). However, the sample size is relative
small in our study, and statistical power is insufficient for
detecting the effect of GSTs genes on AML risk.

Therefore, this case-control study indicated that
GSTT1 null genotype was associated with AML risk in

Table 1. Effect of GSTs Genotypes on the Risk of AML

<table>
<thead>
<tr>
<th>Genotype</th>
<th>AML</th>
<th>%</th>
<th>Control</th>
<th>%</th>
<th>χ²</th>
<th>P value</th>
<th>OR(95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSTM1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>77</td>
<td>47.5</td>
<td>107</td>
<td>52.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Null</td>
<td>86</td>
<td>52.5</td>
<td>97</td>
<td>47.6</td>
<td>0.77</td>
<td>0.38</td>
<td>1.20(0.78-1.85)</td>
</tr>
<tr>
<td>GSTTI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>102</td>
<td>62.3</td>
<td>149</td>
<td>37.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Null</td>
<td>61</td>
<td>37.7</td>
<td>55</td>
<td>28.8</td>
<td>4.74</td>
<td>0.03</td>
<td>1.64(1.03-2.63)</td>
</tr>
<tr>
<td>GSTP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile/Ile</td>
<td>73</td>
<td>44.6</td>
<td>94</td>
<td>56.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ile/Val</td>
<td>59</td>
<td>36.2</td>
<td>74</td>
<td>63.8</td>
<td>0.01</td>
<td>0.92</td>
<td>0.98(0.60-1.60)</td>
</tr>
<tr>
<td>Val/Val</td>
<td>31</td>
<td>19.2</td>
<td>35</td>
<td>17.4</td>
<td>0.67</td>
<td>0.42</td>
<td>1.27(0.69-2.33)</td>
</tr>
</tbody>
</table>

Table 2. Combination Effect of GSTs Polymorphisms on the Risk of AML

<table>
<thead>
<tr>
<th>GSTM1</th>
<th>GSTT1</th>
<th>GSTP1</th>
<th>AML</th>
<th>% Controls</th>
<th>%</th>
<th>OR(95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>Present</td>
<td>Ile/Ile</td>
<td>22</td>
<td>13.5</td>
<td>41</td>
<td>20.1</td>
<td>-</td>
</tr>
<tr>
<td>Present</td>
<td>Present</td>
<td>Ile/Val+Val/Val</td>
<td>23</td>
<td>14.1</td>
<td>36</td>
<td>17.6</td>
<td>1.19(0.53-2.65)</td>
</tr>
<tr>
<td>Present</td>
<td>Null</td>
<td>Ile/Ile</td>
<td>24</td>
<td>14.7</td>
<td>35</td>
<td>17.2</td>
<td>1.28(0.57-2.84)</td>
</tr>
<tr>
<td>Present</td>
<td>Null</td>
<td>Ile/Val+Val/Val</td>
<td>33</td>
<td>20.2</td>
<td>37</td>
<td>18.1</td>
<td>1.66(0.78-3.56)</td>
</tr>
<tr>
<td>Null</td>
<td>Present</td>
<td>Ile/Ile</td>
<td>12</td>
<td>7.4</td>
<td>15</td>
<td>7.4</td>
<td>1.49(0.53-4.11)</td>
</tr>
<tr>
<td>Null</td>
<td>Present</td>
<td>Ile/Val+Val/Val</td>
<td>13</td>
<td>8</td>
<td>14</td>
<td>6.9</td>
<td>1.73(0.62-4.76)</td>
</tr>
<tr>
<td>Null</td>
<td>Null</td>
<td>Ile/Ile</td>
<td>16</td>
<td>9.8</td>
<td>15</td>
<td>7.4</td>
<td>1.99(0.76-5.22)</td>
</tr>
<tr>
<td>Null</td>
<td>Null</td>
<td>Ile/Val+Val/Val</td>
<td>20</td>
<td>12.3</td>
<td>11</td>
<td>5.4</td>
<td>3.39(1.26-9.26)</td>
</tr>
</tbody>
</table>
a Chinese population. These finding indicate that genetic variants of the GSTT1 gene has a critical function on the development of AML. Our study offers important insights into the molecular etiology of AML.

References

