Potential Targets for Prevention of Colorectal Cancer: a Focus on PI3K/Akt/mTOR and Wnt Pathways

Ashok Kumar Pandurangan

Abstract

Colorectal cancer (CRC) is one of the most common cancers in many parts of the world. Its development is a multi-step process involving three distinct stages, initiation that alters the molecular message of a normal cell, followed by promotion and progression that ultimately generates a phenotypically altered transformed malignant cell. Reports have suggested an association of the phosphoinositide-3-kinase (PI3K)/Akt pathway with colon tumorigenesis. Activation of Akt signaling and impaired expression of phosphatase and tensin homolog (PTEN) (a negative regulator of Akt) has been reported in 60-70% of human colon cancers and inhibitors of PI3K/Akt signaling have been suggested as potential therapeutic agents. Around 80% of human colon tumors possess mutations in the APC gene and half of the remainder feature β-catenin gene mutations which affect downstream signaling of the PI3K/Akt pathway. In recent years, there has been a great focus in targeting these signaling pathways, with natural and synthetic drugs reducing the tumor burden in different experiment models. In this review we survey the role of PI3K/Akt/mTOR and Wnt signaling in CRC.

Keywords: Colon cancer - PI3K/Akt - mTOR - Wnt/β-catenin - chemoprevention - flavonoids

MINI-REVIEW

Potential Targets for Prevention of Colorectal Cancer: Focus on PI3K/Akt/mTOR and Wnt Pathways

Ashok Kumar Pandurangan

Introduction

Every year, there is more than 1 million new cases of colorectal cancer (CRC) are diagnosed throughout the world. CRC is the third most common malignancy and fourth most common cause of mortality worldwide (Tenesa and Dunlop, 2009). Despite of the familial basis of CRC, environmental factors such as food-borne mutagens, chronic intestinal inflammation, specific intestinal commensals and pathogens, which leads to the tumor development. CRC is considered to be linked with dietary habits like excess animal fat intake (Reddy, 1986). In contrast, a number of studies have suggested that high consumption of fruits and vegetables decreases the risk of CRC and other cancers (Giovannucci et al., 1992; Slattery et al., 2000; Pandurangan et al., 2012). In my observation a novel flavonoid inhibits ACF formation (Ashokkumar and Sudhandiran, 2008), inhibits cell proliferation (Ashokkumar and Sudhandiran, 2011), controls the levels of glucoproteins (Pandurangan et al., 2012b), modulates the status of thiols (Pandurangan and Ganapasam, 2013a) and induces apoptosis in colon carcinogenesis (Pandurangan and Ganapasam, 2013b).

Pathogenesis of CRC

The progression of the CRC from normal colonic epithelium to the malignant phenotype is accompanied by numerous genetic alterations (Figure 1). The stages start from ACF, polyps, adenomas, and carcinomas (Terzic et al., 2010). Loss of function of Adenomatous polyposis coli (APC) is an early event in the pathogenesis of CRC. During the progression of the adenoma, whereby increases in adenoma size, degree of dysplasia, and degree of villous histology takes place other genetic changes occur such as induction of k-ras oncogene. Loss of function of p53 gene occurs in the late stage of the disease i.e. adenoma to carcinoma stage (Itzkowitz and Yio, 2004).

PI3K/Akt/mTOR Pathway as a Target

Inhibitors of PI3K/Akt signaling have been suggested as potential therapeutic agents in CRC. Published reports suggested that the association of phosphoinositide-3-kinase (PI3K)/Akt pathway, in colon tumorigenesis

Figure 1. Molecular Pathogenesis of Sporadic Colorectal Cancer

DOI:http://dx.doi.org/10.7314/APJCP.2013.14.4.2201
β-catenin

Regulation of Akt/mTOR Pathways

Wnt/β-catenin Pathway as a Target

The Wnt family of secretory glycoproteins plays an important role in embryonic development, the induction of cell polarity, and in the determination of cell fate. A deregulation in the Wnt signaling pathway disrupts axis formation in embryos (Heasman et al., 1994; Funayama et al., 1995; Laurent et al., 1997) and is associated with multiple human malignancies (Polakis, 2000). Wnt signaling also plays an important role in the proliferation and differentiation of stem cells including human mesenchymal stem cells (Boland et al., 2004). β-catenin is the key component of wnt pathway, and it is a 97 kDa phosphoprotein plays a critical role in the regulation of cellular proliferation and in colon carcinogenesis (Behrens, 2000). Under basal circumstances, APC cooperates with GSK3β to regulate β-catenin levels in the cytoplasm through phosphorylation sites in exon 3 of the β-catenin gene (Korinek et al., 1997) leads to ubiquitination in the cytoplasm (Figure 3).

Around 80% of human colon tumors possess mutations in the APC gene and rest of the half has β-catenin gene mutations (Sparks et al., 1998). When mutations are present in either the APC or β-catenin genes, accumulation of the β-catenin protein in the cytoplasm and nucleus is observed (Korinek et al., 1997). In the cytoplasm, the β-catenin protein forms a complex with the transcription factors, TCF and LEF, which migrates to the nucleus,
and co-activates transcription (Korinek et al., 1997). c-MYC, cyclin D1 and CD44 have been reported as targets of the wnt/β-catenin pathway (He et al., 1998; Tetsu and McCormick, 1999). Frequent mutations of the β-catenin gene were found in chemically induced colon tumors in both rat and mouse carcinogenesis models (Dashwood et al., 1998; Takahashi et al., 1998; Suzui et al., 1999), suggesting that the APC-β-catenin pathway plays an important role in the development of colon carcinogenesis in rodents, as seen in humans. Recent reports showed that activation of Wnt/β-catenin signaling is important for both initiation and progression of cancers of different tissues/organs, including liver (Lee et al., 2006; Ashokkumar and Sudhandiran, 2011), thus, Wnt/β-catenin signaling pathway is becoming a promising target for chemoprevention and chemotherapy in CRC (Herbst and Kolligs, 2007; Luo et al., 2007; Ashokkumar and Sudhandiran, 2011).

Sphingadiene (Kumar et al., 2012) and Enigma1 (Symolon et al., 2011) a derivative of sphingolipid potentially reduces the expression as well as, controls the translocation of non-p-β-catenin in APC min mice and colon cancer cells through inhibiting pGSK3β. Similarly, Luteolin, a flavone present in green pepper, perilla leaves and peanut inhibits the expression of non-p-β-catenin mediated by the inhibition pGSK3β in AOM-induced colon carcinogenesis. Kang et al. (2012) reported that, Magnolol, a neolignan from the cortex of Magnolia obovata, was identified as a promising candidate, as it effectively inhibited β-catenin/TCF reporter gene activity (Ashokkumar and Sudhandiran, 2011). Magnolol also suppressed Wnt3a-induced β-catenin translocation and subsequent target gene expression in HEK293 cells. Wu et al. (2012) reported that the, protein levels of β-catenin in the nucleus and cytoplasm were all reduced after treating the colon cancer cells with berberine. Published report from Lai et al. (2011) stated that, dietary curcumin and Tetrahydrocurcumin significantly decreased Wnt-1 and β-catenin protein expression, as well as the phosphorylation of GSK-3β in colonic tissue of AOM-induced mice model. Lycopene, a plant pigment could potentially inhibits the β-catenin protein expression in the xenograft model (Tang et al., 2011). Genistein a plant derived flavonoid, attenuates Wnt signaling by up-regulating sFRP2 (a Wnt pathway antagonist) in a human colon cancer cell line (Zhang and Chen, 2011). Triptolide, a diterpene trioxepide compound extracted from the traditional Chinese medicine herb Tripterygium wilfordii Hook F, potentially represses the expression of LEF/TCF (Liu et al., 2012).

Vaish and Sanyal, (2012) NSAIDs such as Celcoxib and Sulidac inhibits the expression of non-p-β-catenin is mediated by the inhibition pGSK3β in 1,2-Dimethyl Hydrazine-induced colon cancer model. Similarly, Ibuprofen inhibits activation of nuclear β-catenin in human colon adenomas and induces the phosphorylation of GSKβ in colon cancer cell line (Greenspan et al., 2011). Brudvik et al. (2011) stated that, β-catenin nuclear translocation and expression of the β-catenin target genes such as c-Myc and COX-2 were significantly down-regulated upon treatment with Rp-8-Br-cAMPS (Protein Kinase A antagonist).

There are many potential targets were developed by many researchers all around the world to treat CRC. Among them Akt, mTOR and Wnt/β-catenin are the most promising targets were potentially targeted. Prevention of disease is an old and important concept. An essential consideration in cancer research today is that exposure to pharmacologically active chemicals may play an important role in blocking these signaling pathways resulting to reduce the risk of CRC.

References


Chang YJ, Huang YP, Li ZL, Chen CH (2012). GRP78 knockdown enhances apoptosis via the down-regulation of oxidative stress and Akt pathway after epirubicin treatment in colon cancer DLD-1 cells. PLoS One, 7, 35123.


Ashok Kumar Pandurangan

apigenin. Mol Carcinogenesis, 46, 773-82.

Loewith R, Jacinto E, Wullschleger S, et al (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell, 10, 457-68.
Potential Targets for Prevention of Colorectal Cancer: Focus on PI3K/Akt/mTOR and Wnt Pathways


